Errata to Fundamentals of Thermodynamics (SDL), I-P Edition (2004)

February 27, 2017

Shaded items have been added since the previously published errata sheet dated May 6, 2014.

Page 3:4	The equation above the example supplies a Δz of water as "33.9 ft water" but should state " 32.98 ft water."
Page 3:4	Example 3-1 states in the problem that " $\rho = 62.4$ lb/ft ³ " but should state that " $\rho = 64.2$ lb/ft ³ ." The changes in this problem as well as in the equation noted above necessitate changes to the solution to Example 3-1 as follows:
	$\Delta p = (64.2 \text{ lb}_{\text{m}}/\text{ft}^3)(32.2 \text{ ft/s}^2)(1500 \text{ ft})/(32.2 \text{ lb}_{\text{m}} \cdot \text{ft}/(\text{lb}_{\text{f}} \cdot \text{s}^2))(144 \text{ in}^2/\text{ft}^2)$
	$\Delta p = 669 \text{ psi}$
	This value can also be found with the knowledge that 14.7 psia \approx 32.98 ft of water:
	$\Delta p = (1500 \text{ ft})(14.7 \text{ psia})/(32.98 \text{ ft})$
	$\Delta p = 669 \text{ psi}$
	The actual pressure experienced by the vessel is
	$P_{actual} = P_{atmosphere} + \Delta p$
	$P_{actual} = 14.7 + 669 = 683.7$
Page 3:12	The solution to Example 3-3 reads " $v_{mixture}$ " in three places when it should read " $V_{mixture}$."
Page 3:18	The graphic in Problem 3-05 shows a "V" on the axis instead of "v".
Page 3:19	The graphic in Problem 3-06 shows a "V" on the axis instead of "v".
Page 4:4	The first sentence of Section 4.2 reads "the pressure and temperature are not dependent on one another" but should read "the pressure and temperature are dependent on one another."

For online access to these errata as well as updates to other publications, visit www.ashrae.org/publicationupdates.

Page 5:5	The string of equations in the middle of the page reads " $T_2 = (36 + 460) = 496$ R" but should read " $T_2 = (32 + 460) = 492$ R". The p_2 calculation below that reads:
	$p_2 = (v_1/v_2)(T_2/T_1)(p_1)$ = (496/532)(14.7) = 13.71 psia
	but should read:
	$p_2 = (v_1/v_2)(T_2/T_1)(p_1)$ = (492/532)(14.7) = 13.59 psia
Page 6:11	In the Solution to Example 6-1, the equation reads
	$_{1}W_{2} = p_{1}m(v_{1} - v_{2})$
	= $(14.7096 \text{ psia})(10 \text{ lb}_m) \left[(27.890 - 0.01671) \frac{\text{ft}^3}{\text{lb}_m} \right] [(1 \text{ Btu})/5.404 \text{ psia} \cdot \text{ft}^3]$
	= 728.3 Btu
	but should read
	${}_{1}W_{2} = p_{1}m(v_{1} - v_{2})$
	= $(14.7096 \text{ psia})(10 \text{ lb}_m) \left[(26.780 - 0.01671) \frac{\text{ft}^3}{\text{lb}_m} \right] [(1 \text{ Btu})/5.404 \text{ psia} \cdot \text{ft}^3]$
	= 728.5 Btu
Page 6:13	The first sentence on the page references Example 6-3 but should reference Example 6-4.
Page 6:13	In the calculations to the left of Figure 6-7, the $p_2 = p_1(V_1/V_2)$ calculation is repeated instead of supplying the equation for calculating the mass of the air. Replace the second $p_2 = p_1(V_1/V_2)$ calculation with the following:
	$m = (p_1 V_1)/(RT_1)$
	= $(20 \text{ psia} \cdot 1.0 \text{ ft}^3)/[(0.3704 \text{ psia} \cdot \text{ft}^3/\text{lb} \cdot \text{°R})(76^{\circ}\text{R} + 460^{\circ}\text{R})]$
	$= 0.10 \text{ lb}_m$
Page 6:15	The last sentence on the page reads "(note: <i>v</i> is volume)" but should read "(note: <i>v</i> is specific volume)."
Page 6:16	In the paragraph in the middle of the page, the third line reads "conversion factor 1 Btu = 5.404 psia·ft ³ /lb _m to the <i>pv</i> term" but should read "conversion factor 0.185 Btu/psia·ft ³ to the <i>pv</i> term."

- Page 6:20In the Skill Development Exercises for Chapter 6, Problem 6-11 lists 1205 Ω , but
should list 150 Ω .
- Page 7:11Figure 7-4 does not show the piston. The corrected graphic follows.

Figure 7-4. Piston-Cylinder Arrangement and *p-v*

Page 7:14	The second nomenclature item in the Summary reads " $_1W_2$ = net heat transfer" but should read " $_1W_2$ = net work transfer"
Page 8:9	The first sentence of the paragraph beneath the equations reads "where S is the summation symbol" but should read "where Σ is the summation symbol"
Page 8:18	Problem 8-08 reads "a solar water heater 60 ft^2 above ground" but should read "a solar water heater 60 ft above ground."
Page 9:8	The text beneath Table 9-2 reads:
	Throttling is a constant enthalpy device, therefore:
	$t_4 = t_3 + \dot{m}_{R-22} (h_2 - h_1) / \dot{m}_{air} \cdot c_p$
	= 72 + 0.02(120 - 39.502)/[(0.2)(0.24)]
	$= 105.54^{\circ}F$
	But should read "Throttling is a constant enthalpy device, therefore: $h_2 = h_1$."

Page 9:15

In the answer choices for Problem 9-05, replace the current answer (c) with the following:

Page 10:6	The last equation on the page reads " $COP_{HV} = COP_R + 1$ " but should read " $COP_{HP} = COP_R + 1$."
Page 11:7	The equation in the second line on the page reads " $w_{compressor} = q_H = q_L$ " but should read " $w_{compressor} = q_H - q_L$."
Page 12:14	The first equation in the solution to Example 12-5 is cut off at the end. The final expression after the equal sign should read " $(h_2 - h_3)/(h_5 - h_8)$."
Page 12:14	The second line of the COP calculation includes 1.63 as a value instead of the 1.59 that was calculated.
Page 12:14	The third line of the COP calculation is cut off at the end. The final expression after the plus sign should read " $1.59(121.5 - 114.610)$."
Page 12:17	The second line of the second equation in the Solution to Example 12-6 is cut off at the end. The final expression after the equal sign should read "36.217."
Page 12:17	The last equation on the page is cut off at the end. The final expression after the plus sign should read " $(1 - 0.267)(117.0) = 115.5$."
Page 12:20	The last sentence of the second paragraph from the bottom includes incorrect units for enthalpy and should be reworded. The sentence should read " $h_5 = h_6 = 54.239$ Btu/lb _m , is the saturated liquid enthalpy at the heat rejection pressure."
Page 12:28	Problem 12-05 refers the reader to "Example 12.3" but should refer to "Example 12.4 ."
Page 13:7	The first sentence of the paragraph above the gray example box begins "On the right side" but should read "On the left side"
Key Terms and Symbols	The value of g (gravitational acceleration) reads "32.2 ft/sec" but should read "32.2 ft/s ² ."

Skill Development Problem 13-09 is the same as Problem 13-02; please delete Problem 13-09.Exercises forChapter 13